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ABSTRACT
Higher education at scale, such as in the California public
post-secondary system, has promoted upward socioeconomic
mobility by supporting student transfer from 2-year commu-
nity colleges to 4-year degree granting universities. Among
the barriers to transfer is earning enough credit at 2-year insti-
tutions that qualify for the transfer credit required by 4-year
degree programs. Defining which course at one institution will
count as credit for an equivalent course at another institution
is called course articulation, and it is an intractable task when
attempting to manually articulate every set of courses at ev-
ery institution with one another. In this paper, we present a
methodology towards making tractable this process of defining
and maintaining articulations by leveraging the information
contained within historic enrollment patterns and course cata-
log descriptions. We provide a proof-of-concept analysis using
data from a 4-year and 2-year institution to predict articulation
pairs between them, produced from machine translation mod-
els and validated by a set of 65 institutionally pre-established
course-to-course articulations. Finally, we create a report of
proposed articulations for consumption by the institutions and
close with a discussion of limitations and the challenges to
adoption.
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translation, enrollment data, credit mobility

INTRODUCTION
Course articulation has been the bridge that connects pro-
grams from different levels of higher education to one another,
forming pathways to achievement focused on equity of ac-
cess. Across the United States, there is evidence that these
pathways have been underperforming. Around 45% of the
20 million students entering higher education in the United
States begin their post-secondary experience at 2-year public
institutions [2]. A 2010 US Department of Education survey
of 19,000 "Beginning Postsecondary Students" (BPS) found
that 81.4% of community college students had aspirations of
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transferring to earn a 4-year degree [11]. Data on 852,439
public community college students, collected by the National
Student Clearinghouse (NSC); however, found that only 13%
had earned a 4-year degree in six years after beginning at a
community college [12]. The picture looks better for those
in the study who successfully transferred, with 42% of these
students having completed their 4-year degree. Course artic-
ulation, or a lack of it, is not the primary culprit for these
low outcomes; however, it is likely not an insignificant source
either. Evidence of this is an analysis of the BPS data from
the US Government Accounting Office’s (GAO) in which it is
estimated that 42% of credit earned at the community college
level is lost upon transfer to a 4-year institution [1]. Much of
this loss is due to switching majors or earning an excess of
general credit before declaring a major, though it is estimated
that a portion is due to lack of articulation and that a 20%
increase in 4-year degree attainment, among transfers, can
be expected if those articulations existed [8]. The impact of
insufficient articulation on student rates of successful transfer
has not been quantified, but a recent spate of state and national
efforts to define additional pathways suggest that it has been an
important factor [3, 4]. These observations serve as mounting
evidence that providing more comprehensive articulations can
help improve transfer success through greater credit mobility.

Articulations at the degree level are often created by state man-
date, with courses being developed at the 2-year and 4-year
institutions in unison, or one modeled after the other, and with
collaboration between faculty at both. Outside of these de-
gree level articulations are those made on a course-by-course
basis. In this case, there is a significant bottleneck of human
resources committed to processing and validating requests for
articulation. Each campus typically has a designated articula-
tion officer, or chief instructional officer [13]. This person is
responsible for receiving articulation requests, choosing which
to consider, and then beginning the process of validation by
conferring with the instructor of record at the other institution
by way of its respective articulation officer. A diagram of the
articulation process in the California public post-secondary
system is depicted in Figure 1. If only considering articulation
of courses from one of the 111 2-year California Community
Colleges (CC) to courses at the nine 4-year University of Cali-
fornia (UC) campuses, there are 63M pairs (1,000*7,000) to
consider, assuming1 a catalog of 1,000 courses at the CC and
7,000 at each UC. This number can be reduced if assuming

1These numbers are assumed based on counts extrapolated from our
dataset consisting of enrollments from one UC and one CC
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there always exists a clear department-to-department mapping
between institutions, which is not always the case, and that
courses are only considered for articulation within the mapped-
to department. In this case, the lower bound number of course
pairs to consider is 35,000 (20*35*50) assuming an average
of 20 courses per department at the CC, 35 courses per de-
partment at the UC, and 50 departments at the CC articulating
only to a single respective department at the UC. This number
increases significantly when considering and maintaining ar-
ticulation to the 23 institutions in California’s State University
System and articulation to the other 110 community colleges,
necessary for lateral (CC-to-CC) transfer. The intractability
of effectively curating an articulation database with a manual
process increases exponentially when considering articulation
to out-of-state or private institutions. The GAO estimates that
94% of credits are lost when transferring from a public to
private institution [1].

In this paper, we posit that institutional big data have been an
underutilized source that can be leveraged towards combating
the bleak combinatorics of course-to-course articulation. We
investigate the utility of these sources using two datasets of
course enrollments and course descriptions, one from a 4-year
University of California campus (referred to as UC1) and one
from a 2-year California Community College (referred to as
CC1). Recent work has found that analysis of enrollment
sequences using word2vec approaches can embed courses into
a space of semantic structure [9] similar to the space words are
embedded into based on their word contexts in a corpus [5].
We build on this finding to test if a translation can be learned
between the course spaces of two different institutions, just as
it has been learned between the word spaces of two different
languages [6].

DATASETS

UC1 dataset
Our UC1 dataset consists of 7,487 courses in 179 depart-
ments taken between 2008 and 2017. We inherit pre-trained
vectors for each course from the authors of prior work [9].
These continuous valued vectors are 300 dimensions in length
trained from 4.8 million enrollments from 164,196 students
using a skip-gram model and tested against a validation set of
within-institution course credit restrictions (i.e., equivalencies)
curated by the university. Details of this training is explained
later in the models section of this paper. Also found in this
dataset are the plain-text catalog description of each course.
The average length of a UC1 course description is 325 words
and there are 489 descriptions with fewer than 10 words.

CC1 dataset
Our CC1 dataset consists of 1,000 courses in 53 departments
taken between 2013 and 2018. This is a novel dataset for
which no prior models had been trained. The average length
of CC1 course descriptions is 27 and there are 62 descriptions
which have less than 10 words. Additionally, this dataset
contains 298,174 enrollments, and their semester and year,
made by 58,716 students.

Figure 1. Diagram of the process for course articulation in the Univesrity
of California system, sourced directly from the California Articulation
Policies and Proceedures Handbook3. The process for course-to-course
articulation can be seen by following the left side of the flow diagram.

UC1’s course CC1’s course(s)
AFRICAM5B AFRAM_31
ASAMST20A ASAME_45A; ASAME_45B
ASAMST20C NO COURSE ARTICULATED

Table 1. Course articulation samples from assist.org. Multiple CC1
courses denote that both must be taken to count towards the UC1 course
credit.

Validation set
We use the existing set of course articulations between UC1
and CC1 to evaluate the predicted articulations of our models.
These articulation pairs were screen scraped and manually
enumerated from assist.org4, the official information system
for looking-up articulations within the California public post-
secondary system. The system lists the articulations that exist
between the two institutions with respect to each major offered
at CC1. The total number of articulation pairs extracted was
65. Given our goal of proposing new potential articulations,
we also curated a list of major satisfying courses at UC1 for
which there were no respective articulated courses at CC1.
There were 184 such UC1 courses. Table 1 shows samples
from this course articulation dataset.

MODELS
In this section, we present several models for course represen-
tation from which to predict the similarity between courses at
the two institutions. We will also describe the application of
machine translation as a linear transformation from a source
course vector space (i.e., UC1) to target course vector space
4These articulations were kept current up until 2017. A new system,
with updated articulations, is expected within the year.



(i.e., CC1). This technique is applied to our course2vec based
course representations.

Collaborative-based model (course2vec)
We use an adaptation of word2vec applied to course enrollment
sequences as described in prior work [9, 10]. The data are
prepared by enumerating course enrollment sequences per
student with the enrollment sequence consisting of course ID
tokens (e.g., ECON_141) sequenced in the order in which the
student took the courses. Courses taken in the same semester
are serialized by randomizing their within-semester order. A
skip-gram is then applied to these sequences exactly as it
would be applied to sequences (or sentences) of words in
a language context to produce continuous vectors for each
course. Prior work has found that these vectors, learned from
enrollment sequences, encode information about the topic of
the course, as well as latent attributes such as its mathematical
rigor and the most common major of students taking the course
[10]. For the UC1 dataset, these vectors were pre-trained and
inherited from the authors of that prior work. For CC1, we
train course vectors, sweeping the hyper-pararmeters of vector
size and window size and perform model selection based on
the leave-one-out predictive performance on our articulation
validation set, described in detail in a later section. There is
a threat of overfit in this approach; however, we consider it
to be minor given course2vec is an unsupervised process and
a limited number of hyper-parameter combinations are used
with which to generate candidates for model selection.

Content-based models
Course catalog description is the source of similarity data used
by this class of models. We consider three different course
representations utilizing these data; simple bag-of-words, tf-
idf, and an average of the respective word vectors of words in
the description using a pre-trained word embedding.

BOW with term-frequency
In our simple bag-of-words (BOW) model, each course is
represented as a vector of the length of the total unique words
in all courses across both UC1 and CC1. The values in a
course’s vector are zeros unless the word of the corresponding
position in the vector has occurred in the description, in which
case the frequency of this word in the description is used.
Similarity between courses can be calculated using cosine
similarity of their respective BOW. We applied a few filters to
course descriptions before constructing the BOW of courses
for both institutions. First, was to filter out non-words (e.g.,
course numbers) from the descriptions. Second, we removed
the top 100 most frequent words (e.g., course, student, credit)
from all descriptions. After filtering, we were left with a
vocabulary of 14,316 across all descriptions.

TF-IDF
The simple BOW model assigns word frequencies as weights
to words. However, if a word appears frequently in most of the
courses, it will not help to differentiate between courses, nor
help in identifying which are truly similar. We consider a tf-idf
(term frequency-inverse document frequency) representation
to address this issue, assigning a weight to a particular term t
in a course description d. As a result, instead of representing

a course description as a vector of word frequencies, each
dimension of the vector is a real-valued tf-idf weight (wt,d),
calculated as following:

wt,d = (1+ log(t ft,d))× log10
N

d ft
(1)

in which,

• t ft,d : frequency of term t in course description d

• d ft : number of course descriptions in which term t appears

• N: number of course descriptions in the collection

Word2vec (DescVec)
There is a large disparity in the length of descriptions between
UC1 (325 words) and CC1 (27 words). Anticipating that this
may introduce noise into the process of finding similar courses
based on description, we decided to attempt to ameliorate this
issue by representing both institution’s course descriptions
using a pre-trained public word embedding provided by the
seminal word2vec work [5, 7]. This embedding was trained
on 100 billion words from Google News with a vector size
of 300 dimensions. To represent course vectors using this
word embedding, we average over all the vectors of the words
appearing in the course descriptions after applying the same
pre-processing as described in the above BOW sections. This
approach, which we refer to as DescVec, is anticipated to have
the added benefit of still finding similarity between courses if
they use different, but synonymous words.

Model combination
The content-based and collaborative-based course representa-
tions are produced from entirely different sources of informa-
tion about courses and are likely to posses their own benefits
and deficits. The content-based models represent the con-
tent of the course as described by the instructor; however,
the description can become out of date and a course can be
described in an overly brief or generic way. In comparison,
the course2vec models use student enrollment behaviors to
inform the representation of a course. Because of this, they
may contain important information about the course known by
students (e.g., which are the courses with a reputation for be-
ing easy) but not expressed by the instructor in the description.
Conversely, course2vec representations may suffer from noise
in the case of courses with low enrollment (a minimum en-
rollment of 15 was set in the model) and also will suffer from
courses that have recently changed their content considerably
from historic offerings. In order to allow these two models
to contribute their complementary benefits, we add a model
to our evaluations which is a combination of the DescVec
model and the course2vec model.The combining process is as
follows:

1. Source course vector concatenation. Firstly, the source
course vectors are transformed to the target course embed-
ding space through a machine translating process detailed in
the next section. We then concatenate the translated source
course vectors with their respective DescVec course vectors
(see the upper concatenation in Figure. 2).



Figure 2. Process of combining course2vec and DescVec representations
for UC1 course vectors via a translation matrix and CC1 course vectors

2. Target course vector concatenation. No translation is
needed. We only concatenate the target course vector with
its respective DescVec course vector (see the lower concate-
nation in Figure. 2).

Machine Translation
For the course2vec model, UC1 course vector set and CC1
course vector set are learned separately; thus, they do not share
the same coordinate frame of reference and their embeddings
are subsequently different. Moreover, the dimensions of the
two vector spaces are not the same. We can not directly cal-
culate the similarity between two course vectors coming from
two different spaces. However, a linear translation between
skip-gram embeddings can be learned as demonstrated by
Mikolov at el. [6] that showed that the same concepts (e.g.,
animals) in different languages have similar relative geometric
arrangements in their embeddings. By applying the linear
translation of scaling and rotation, a reasonable mapping be-
tween the two language spaces could be found based on a
small set of preexisting word translation pairs. This is the
key idea behind the parallel we draw to course embedding
translation where we base the learning of this translation of
two institution embedding spaces on a small set of preexisting
course articulation pairs.

Regression-based translation
Since we anticipate that the same courses in different institu-
tions are likely to have similar geometric arrangements in their
respective institution’s embeddings, the transformation from
one vector embedding space to another can be expected to be
linear. We perform a general linear regression with the input
vector s ∈ Rn and the output vector t ∈ Rm, in which n and
m are the sizes of the dimensions of the source vector space
and target vector space, respectively. The goal of our model
is to minimize the differences between the translated source
course vectors and target course vectors in the N articulation
pairs. The optimization problem is described as follows:

mintrans

N

∑
i=1

dist(trans(si), ti) (2)

The function trans is used to translate a course vector from
the source embedding space to the target embedding space
using the optimized weights W and biases b (also called trans-
lation matrix M) obtained from the regression model. The dist
function is the loss function in the regression model. We use
cosine_proximity and mse loss functions to train our models,
discussed more in section “Cosine vs Euclidean". Stochastic
gradient descent is used as the optimizer to fit the model to
our data. After translating a course vectors from the source
embedding space to the target embedding space, the translated
course vector now has the same number of dimensions as all
the target course vectors, allowing it to be compared with tar-
get course vectors using metrics such as cosine similarity and
Euclidean distance.

Articulation Prediction
The goal of our methodology is that, given a course c in one
institute, we would like to predict an ordered list of courses
in another institute that are most similar to c. With the course
representations and machine translated vectors in-hand, we
can compute the similarity or distance between two courses
from different institutions. The course articulation process is
described as following:

1. Represent all courses by one of the course representation
models.

2. Translate the source course vector s through the machine
translation process if the vector was produced by the
course2vec or combined model. Otherwise, use the original
representation of the source course vector (i.e., content-
based models).

3. Compute the cosine similarity (Equation 3) or Euclidean
distance (Equation 4) between the source course vector
(or the translated source course vector) and all the course
vectors in the target institute.

4. Rank the target institute courses based on their similarity or
distance scores, and choose the top k (e.g., 10) courses for
articulation recommendation.

EVALUATION
In this section, we discuss how we validate our models, which
includes choosing the hyper parameters for CC1’s course2vec
model, choosing between cosine similarity and Euclidean to
find similar courses, and considering the difference in perfor-
mance of our articulation predictions if we limit predictions to
a similar department at the target institution.

Since our validation set only contained 65 labelled articulation
pairs, we use a leave-one-out cross-validation. We use the
metric of recall @ k to evaluate prediction performance. This
means that, for each of the 65 pairs, given the UC1 course
in the pair, we obtain the top k ranked CC1 courses from
the articulation prediction process explained in the previous



section. The recall is calculated based on the percentage of
correct CC1 courses that fall within the top k. This metric
was chosen because of the anticipated scenario where we
generate an articulation report to the articulation officer of
CC1. This report will not show just one suggested CC1 course
per unarticulated UC1 course, but rather a list of suggestions.
The k in recall @ k represents the length of this hypothetical
list and the recall metric represents the percentage of the 65
lists of length k that included the true articulation(s) in them.

Parameter search
The two most crucial hyper-parameters of the skip gram model
are vector size v and window size w. Modification of the vec-
tor size is a way to tune the granularity with which regular-
ities are produced in the feature space. Different languages
and dataset sizes will require different vector size settings to
achieve the same granularity. It is desirable for the granularity
of both course vector sets to be at the same level for the fea-
ture mapping to be effective. We therefore conduct a minimal
hyper parameter search of the CC1 course2vec model. We
start with the pre-trained course vectors from UC1. Then,
we sweep a small range of vector sizes and window sizes for
CC1’s course2vec by optimizing the leave-one-out recall per-
formance described in the above section. We chose recall @ 5
as the k used for optimization as this was an ad-hoc estimate
for a reasonable length list of courses for an articulation officer
to consider. This process of hyper-parameter tuning went as
follow:

1. For each of the 27 parameter sets, we run course2vec 20
times to learn different CC1 course vectors based on differ-
ent random model initializations

2. Obtain the average recall @ 5 from leave-one-out cross
validation described above for each CC1 course vector set

3. Average over the recalls @ 5 of all the 20 course vector sets
for particular parameter sets

4. Select the parameter set with the best average recall perfor-
mance

The result from Figure 3 shows that, within the 27 parameter
sets, the vector size 20 and window size 5 achieved the best
perform w.r.t recall @ 5. Therefore, we chose these values to
train the final CC1 course vector set.

Cosine vs Euclidean
Given vector-space course representations, if vectors come
from the same original space, it is effective to directly calcu-
late their distances using cosine or Euclidean distances. On
the other hand, vectors coming from different spaces need
to be mapped to the same space by the proposed method ex-
plained in Section “Regression-based translation". After the
transformation, we can calculate their distances.

- Cosine similarity: measure the similarity between two non-
zero vectors x and y by computing the cosine of the angle
between them.

Figure 3. Recall performance @ 5 with different sets of course2vec vec-
tor sizes and window sizes for training CC1 vectors

cosine_similarity(x,y) =
x.y
‖x‖‖y‖

=
∑

n
i=1 xiyi√

∑
n
i=1 xi2

√
∑

n
i=1 yi2

(3)

- Euclidean distance: measure the straight-line distance be-
tween two points in Euclidean space.

Euclidean_distance(x,y) =

√
n

∑
i=1

(xi− yi)2 (4)

Depending on which distance metric is used for evaluation,
matching to an appropriate loss function used to optimize the
problem defined in Equation 2 may be called for. If cosine
similarity is used to evaluate, we can use cosine_proximity as
the loss function, and mean squared error (mse) as the loss
function in the case of Euclidean as the evaluation metric.

Department filtering
It is intuitive to think that course articulation pairs should be in
equivalent departments across colleges (e.g., a course offered
by Mathematics department at UC1 should be articulated to
a course offered by Mathematics department at CC1). We
therefore also compare the performance of the best model to
its department filtering version. However, among the 65 articu-
lation pairs, there are 2 pairs that come from departments that
were not mapped to one another in the department mapping
conducted by the authors. These were STAT2 to MATH13
and NUSCTX10 (Nutritional Sciences and Toxicology) to
BIOL28 (Biology). In order to have a fair comparison for with
and without department filtering data, we excluded these two
pairs, leaving us with 63 articulation pairs for that evaluation.

RESULTS
In this section, we present the articulation prediction perfor-
mance of the different models and present visualizations of the
course embeddings for intuition. For the course2vec model
and combined model, As we obtained from our development
experiments, the performances of models trained with mse
loss function were worse than the ones trained with cosine



Figure 4. Recall comparison of the different models trained with co-
sine_proximity loss function @ k

Course
Representation

Median
Rank

Mean
Rank

Std of
Rank

Bag of words 3.0 59.12 173.28
TF-IDF 3.0 57.01 177.65
DescVec 3.0 21.06 57.94
course2vec 6.0 17.74 33.65
course2vec+DescVec 2.0 7.94 15.73

Table 2. Course articulation ranking validation from the different
course representations

loss function. Therefore, we only report the results for the
models trained with cosine loss functions (see Figure 4).

In addition to the recall performances @ k, we also report the
rank of the true articulated course in our prediction results. The
median and median rank across the 65 articulation predictions
is reported, as well as the standard deviation of ranks (see
Table 5).

Observations:

• Although slim, the BOW model with TF-IDF shows con-
sistent improvement over the term-frequency BOW model
across values of k.

• Among the content-based models, the DescVec model per-
forms best, overall.

• The course2vec model performs substantially worse than
the content-based models on recall @ 5 but then matches
their performance for all other values of k. It also can be
observed from Table 5 that, while having a higher median
rank, the course2vec model’s mean and std are lower than
the content-based models, suggesting that it has fewer poor
performing outliers.

• The combined model (course2vec + DescVec), which
leveraged the strength of both the content-based and
collaborative-based models, shows the best performance
across all values of k and among all the rank metrics.

Figure 5 shows the difference in performance between the
combined model with and without department filtering. The

Figure 5. Recall comparison of the CourseVec + DescVec models with
and without department filtering

performance of the model with department filtering brings re-
call @ 5 up above 80%. An interpretation of this result is that
if the model were to produce a set of five CC1 course articula-
tion suggestions for each one of ten chosen UC1 courses, eight
of those sets of ten suggestions can be expected to contain an
appropriate articulation course.

Visual inspection of course2vec models
We visually inspect the CC1 and UC1 course2vec models to
investigate if similar geometric regularities can be seen as they
have been in visualization of language translation models [6].
We use PCA to reduce the course2vec vectors to 2-dimensions,
then zoom into the the Computer Science departments of each
visualization to compare the relative positions of courses with
articulations between UC1 and CC1. As we can see from
Figure 6, the 2D course vectors obtained from the skip-gram
models show a similar, but not perfectly so, geometric arrange-
ments of articulated courses. Computer Science was picked
because courses within that department performed well on
the articulation task and produced a PCA visualization that
underscores why the course2vec representations learned from
course enrollments alone can be effective.

Moreover, we also inspect the course representations for all
courses at each institution, this time using t-Stochastic Neigh-
borhood Embedding [14] to reduce the course2vec+DescVec
representations to 2-dimensions. The t-SNE algorithm is cho-
sen in this case because it is generally better at retaining global
embedding structure than PCA. This visualization (Figure 7)
reveals a few regularities in the relative department-level po-
sitions of the two institutions as well as a tight grouping of
courses by department, also observed in [10]. The deparments
of Chemistry, Engineering, Civ Eng, Architecture, African
American Studies, and American Studies can be seen as ap-
pearing in clockwise order in both institutions, underscoring
why the representations learned from course enrollments by
course2vec alone, rival the information contained in course
descriptions.

ARTICULATION SUGGESTION REPORT
The intent of this work is to lead to more articulations being
produced across the system. In order to achieve this impact



Figure 6. Distributed vector representations of Computer Science courses in UC1 and CC1. The four course vectors are reduced to two dimensions using
PCA in each of the institutions. UC1 includes Structure and Interpretation of Computer Programs (COMPSCI61A), Data Structures (COMPSCI61B), C++
for Programmers (COMPSCI9F) and JAVA for Programmers (COMPSCI9G). CC1 includes Structure and Interpretation of Computer Programs (CIS_61),
the combination of Object Oriented Programming Using C++ (CIS_25) and Data Structures and Algorithms (CIS_27), Object Oriented Programming Using
C++ (CIS_25) and Java Programming Language I (CIS_36A).

Figure 7. t-SNE scatter plots of courses obtained from the course2vec+DescVec model. The color of the points represent the departments and the text
annotations represent the names of the departments which have sufficient courses and direct mappings between UC1 and CC1.



without an overhaul of the UCOP articulation process, we see
this methodology as fitting into the process by producing an ar-
ticulation suggestion report destined either for the articulation
officer or direct to the faculty of suggested courses at CC1. In
this section, we describe this last-leg of the process by consid-
ering the production of this report. There are 184 UC1 courses
listed in assist.org that do not yet have CC1 courses articulated
to them. All of these might be reasonable to provide sugges-
tions for, but since faculty and the articulation officer can be
expected to have limited time and resources to evaluate sug-
gestions, we must consider a subset of the 184 to be privileged
for inclusion in the report over the others and if a reasonable
heuristic exists with which to choose these courses. All results
in this section are based on the best performing representation,
the course2vec+DescVec model with cosine_proximity loss.

Heuristics for choosing candidate UC1 courses
Among the 184 UC1 courses that do not have articulated
courses at CC1, we filter out courses from UC1 departments
that do not exist at CC1, resulting in 155 remaining UC1
courses. While a subset of these courses could be selected
at random for inclusion in the report, an improvement on
random selection can be made if a heuristic of UC1 courses
exists that correlated with CC1 articulation performance. This
would allow us to put together a report most likely to lead
to successful articulation. In order to prioritize UC1 courses
for articulation suggestion, we explore heuristics based on the
three following proposed metrics:

• Metric 1: correlation between ‘the distance of predicted
UC1 to CC1 articulation vector to the vector of the nearest
CC1 course’ and ‘the rank of the target CC1 course vector’

• Metric 2: correlation between ‘the distance of predicted
UC1 to CC1 articulation vector to the target CC1 course
vector’ and ‘the rank of the target CC1 course vector’

• Metric 3: correlation between ‘the number of CC1 course
vectors that fall within a threshold θ of the distance to the
predicted UC1 to CC1 articulation vector’ and ‘the rank of
the target CC1 course vector’. We define θ as the average
distance between the predicted vectors and the target vectors
in the validation set.

The intuition behind Metric 1 is that if the translation of the
UC1 course vector into the CC1 space places it in the middle
of nowhere, far from any CC1 courses, this may be a sign that
it will produce poor suggestions. Metric 2 requires the infor-
mation of the actual target course given as input, which we do
not have for the 155 unarticulated UC1 courses; however, it
serves as a valuable upper bound and a sanity check on the
behavior of our proposed method. We expect that the distance
of predicted vector to the target course vector should be highly
correlated to the rank of the target. The intuition of Metric 3
is that the density of CC1 courses around the predicted vector
may have a correspondence with the quality of suggestions,
though we did not have a hypothesis if this corrrelation would
be positive or negative. For all three metrics, we calculated
correlations using the two different metrics of cosine similar-
ity and Euclidean distance, trying mse and cosine_proximity
loss with both. We also tried the course2vec+DescVec model

Figure 8. Demonstration of the correlation between ‘the distance of pre-
dicted vector to the target course vector’ and ‘the rank of the target’, Met-
ric 2, obtained from the combined model with cosine distance and with-
out department filtering

both with and without department filtering. On the reference
Metric 2, the model trained with mse loss without department
filtering obtained a statistically significant correlation of 0.756
(depicted in Figure 8). Metric 1 scored the second highest cor-
relation of 0.565 from the model trained with mse loss function
without department filtering and using cosine distance. We
therefore chose this model and heuristic for selecting courses
for articulation suggestion.

Compiling the final report
Our goal was to produce an articulation report that took no
longer than two hours for an articulation officer to evaluate.
We anticipated that the clear false-positives, comprising the
majority of suggestions, could be quickly dismissed and there-
fore estimated an average of 30 seconds to evaluate each sug-
gestion. Based on results of the leave-one-out evaluation, a
considerable bump in recall accuracy is observed when produc-
ing 10 or 15 suggestions instead of 5. Therefore, to increase
the changes our suggestions contained the diamond in the
rough, we chose to produce 15 CC1 suggestions for each UC1
course. In order to limit the total officer evaluating time to two
hours, this meant choosing ten UC1 courses which would be
based on their Metric 1 score. In the report, we provide the
catalog description of the UC1 course as well as a link to its
syllabus for quick reference. Catalog descriptions for the 15
suggested CC1 courses to articulate to are also included in the
report. Tables 3 and 4 show sample courses from the report.

DISCUSSION
We found that a simple word2vec approach to articulation,
DescVec, performed equal to or better than the experimental
course2vec machine translation model. However, the experi-
mental model was shown to contain novel useful information
in addition to what was found in the course description based
DescVec model. This was made evident by the performance
of the concatenation of the course2vec model vectors with the
DescVec vectors which performed meaningfully better than
any other model in our recall @ k metric for all values of k.
It also performed between 30 and 50% better than the second



Campus Course ID Course Title
UC1 ECON2 Introduction to Economics
CC1 ECON_1 MACRO-ECONOMICS
CC1 ECON_2 MICRO-ECONOMICS
CC1 BUS_1A FINANCIAL ACCOUNTING
CC1 BUS_1B MANAGERIAL ACCTG
CC1 MATH_16A CALCULUS-BUS/SOCSC
CC1 BUS_2 INTRO TO BUS LAW
CC1 MATH_1 PRE-CALCULUS
CC1 BUS_10 INTRO TO BUSINESS
CC1 MATH_13 INTRO TO STATISTICS
CC1 MATH_16B CALCULUS-BUS/SOCSC
CC1 BUS_21 PAYROLL ACCOUNTING
CC1 MATH_3A CALCULUS 1
CC1 BUS_4 COST ACCOUNTING
CC1 MUSIC_15A JAZZ/BLUES/POP MUSIC
CC1 MUSIC_15B JAZZ/BLUES/POP MUSIC
Syllabus: https://www.econ.UC1.edu/.../syllabus/Econ....pdf

Table 3. A sample course, ECON2, from the articulation report. The
catalog description of ECON2 beings with, "Economics 2 provides an
introduction to both microeconomics, the study of consumer and firm
behavior, markets, international trade, and market failures; and macroe-
conomics, the study of economic growth, unemployment, and inflation.
Students learn both economic theory and some of the empirical evidence
behind the theory. Special emphasis is placed on the application of eco-
nomic tools to contemporary economic problems and policies."

Campus Course ID Course Title
UC1 ENGIN26 3D Modeling for Design
CC1 ENGIN_77 PROGRAMMING/MATLAB
CC1 ENGIN_22 ENGINEERING GRAPHICS
CC1 MATH_3E LINEAR ALGEBRA
CC1 ENGIN_45 PROPERTIES/MATERIALS
CC1 MATH_3F DIFFERENTIAL EQUATIONS
CC1 PHYS_4B GEN PHYSICS W/CALCULUS
CC1 MATH_3C CALCULUS III
CC1 ENGIN_35 ENGIN MECH-STATICS
CC1 PHYS_4A GEN PHYSICS W/CALCULUS
CC1 MATH_11 DISCRETE MATHEMATICS
CC1 ENGIN_17 INTRO ELECT ENGIN
CC1 ENGIN_18 INTRO ELECTRICAL ENGIN
CC1 MATH_3B CALCULUS II
CC1 CIS_61 STRUC/INTER COMP PRG
CC1 PHYS_4C GEN PHYSICS W/CALCULUS
Syllabus: https://tbp.UC1.edu/syllabi/758/download/

Table 4. A sample course, ENGIN26, from the articulation report. The
catalog description of ENGIN26 is, "Three-dimensional modeling for en-
gineering design. This course will emphasize the use of CAD on com-
puter workstations as a major graphical analysis and design tool. Stu-
dents develop design skills, and practice applying these skills. A group
design project is required. Hands-on creativity, teamwork, and effective
communication are emphasized.

best model in median, mean, and std. rank metrics and was
therefore used to produce the articulation report.

The primary barrier to adoption of this methodology is sharing
of enrollment data. It is a challenge to successfully approach
community colleges with requests to share anonymized en-
rollment data. In order for this endeavor to be successful, it
may take the support of existing centralized repositories of
these data, such as the assist.org system, operated by the UC
Office of the President (UCOP), or national data collectors
such as the National Student Clearinghouse or Department of
Ed. A secondary barrier to adoption is the degree to which
this data-assistive method is accepted into the socio-technical
system of course articulation. If the method is seen as a threat
to articulation officers’ jobs, as AI is increasingly seen as to
many jobs, it will be difficult to integrate with the articulation
officer as the point of contact.

While our study focused on these methods used to identify new
articulations, out of date articulations may be just as important
to identify. Transfer students receiving credit for courses that
do not well enough prepare them for the material that will be
encountered upon transfer are also harmful to student success.
The methods described could just as well be used to identify
the existing articulations with the lowest articulation scores,
for re-consideration.

LIMITATIONS AND FUTURE WORK
A limiting factor to the potential success of a report generated
for UC1 to CC1 articulation is that CC1 is what is known as
a "common feeder school" to UC1, meaning that it is a top
source of transfer students for UC1. This means that articu-
lations between the two institutions may be near saturation
levels. A limitation of the course2vec approach is that a course
must have an enrollment history in order to receive an embed-
ding. This would rule out courses which are being offered for
the first time as candidates for articulation to or from. In this
case, a content-based model would need to be defaulted to.
The primary limitation of the machine translation method is
that it relies on existing articulations to learn the translation,
ruling out the method for application to institution pairs for
which no articulations exist, which are by definition the most
in need of articulation. Again, the content-based methods
could be applied in these cases and promising unsupervised
language translation methods [15] may become candidates
for overcoming a lack of existing articulations to train on.
Faculty currently consider factors such as the difficulty of
the source course and its syllabus when deciding to accept a
proposed articulation. Future enhancements to the content-
based models could include parsed syllabus information and
data from the LMS. Were it available, test questions and their
grading or even graded student answers might further provide
a means for automatically scoring the match in difficulty be-
tween courses at different institutions. These data are available
in MOOC datasets, and thus the emerging articulation context
of MOOC micro-credentials5 and their mapping to accredited
degree programs is already halfway to a tenable context for
this approach.

5https://www.edx.org/micromasters
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