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Understanding Ratio and
Proportion as an Example
of the Apprehending Zone
and Conceptual-Phase
Problem-Solving Models

Karen C. Fuson
Dor Abrahamson

Learning mathematics requires learning to use culturally specific mathematical language,
formats, and methods (math tools). To use these math tools effectively in a problem situation,
one must learn to identify the mathematical elements of that problem situation; i.e., one must
learn to mathematize. In traditional approaches to mathematics learning, these aspects are
often separated, with problem solving following learning about mathematical tools. We present
in this chapter a model for learning mathematics with understanding that highlights the kinds
of connections that can facilitate sense-making by the learner. We exemplify this model with a
new approach to the learning of ratio and proportion. This approach addresses two major
learning difficulties in this domain (e.g., Behr, Harel, Post, & Lesh, 1993; Harel & Confrey,
1994; Kaput & West, 1994; Lamon, 1999). First, students typically use additive rather than
multiplicative solution methods (e.g., to solve 6:14 = ?:35, they find the difference between 6
and 14 and subtract it from 35 to find 27:35 rather than seek multiplicative relationships).
Second, they have difficulty moving from easy problems that use the basic ratio (e.g., 3:7 =
?:14) to middle-difficulty nondivisible problems in which neither ratio is a multiple of the other
(e.g., 6:14 = 7:35).

The two models of learning and teaching mathematics introduced here seek to enlarge our
view of mathematical cognition by examining such cognition in process during teaching and
learning. It is conceptually and methodologically difficult to capture such rich thick data, but
our models are intended to serve as lenses to focus on certain central elements of such
teaching and learning. We also introduce a new methodological tool for data organization and
presentation, our transcliptions. These give the reader brief views of interactions in our classrooms
via tables focused on the learning issues we identified in the domain of ratio and proportion.
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214 Handbook of Mathematical Cognition

The short length of this chapter prevents us from discussing the models, the ratio and proportion
design, or the empirical results in any detail, but we provide references for more details in
other papers.

THE APPREHENDING ZONE MODEL

Our Apprehending Zone (AZ) Model focuses attention on several aspects of teaching and learning.
The first is relationships between the mathematical tools educational designers plan for stu-
dents to use, how these tools are used in the classroom, and the conceptual schemes students
develop (these are shown rising vertically in Figure 13.1). The design researcher’s understand-
ings of a conceptual domain become manifested in the Design Space as domain tools and
activities that are designed (Figure 13.1, bottom) and then become part of students’ under-
standing through their participation in the classroom interactions using the Classroom Action
Tools (Figure 13.1, center), so that students come to share close-enough taken-as-shared math-
ematical interpretations of the domain tools in their own individual Internalized Space (Figure
13.1, top). A second aspect of the model is how students learn classroom-shared domain-
specific body-based dynamic mathematical images (see Figure 13.1) through interacting with
and communicating about the math tools. We combine Piagetian and Vygotskiian theoretical
constructs in this model of how design research-based tools and materials are taught and
learned in a constructivist social—cultural classroom. We intend both meanings of apprehending
(holding and understanding) to highlight the crucial links between body-based perceptual
actions (seeing, hearing, speaking, body sensing, and gesturing) and conceptual actions (a
Piagetian perspective). The Apprehending Zone includes each student’s peri-personal space (the
space around a student within which the student can reach) and the classroom communicative
social space within which students operate by externalizing-internalizing actions, words, in-
scriptions, and visual structures (a Vygotskiian perspective).

A third aspect of the model is how a teacher creates a classroom learning zone of focus,
engagement, and participation by leading students’ attention to critical mathematical ele-
ments and by continually helping students to make three kinds of crucial links. The first is
conceptual links among the domain math formats (shown on the right center in Figure 13.1).
The second is conceptual links among the real-world situations that can be recorded in and
solved by the domain math formats (shown on the left center in Figure 13.1). The third is links
across problem situations and math tools by mathematizing the problem situations and by
storyizing the mathematical tools (shown in the arrows across the center of Figure 13.1). In
making these links, and in understanding the situations and the math formats, the teacher
and all student participants use body focusing, indicating acts, and gestures to lead their own
attention and that of others in the class who may be watching or listening to them. Thus, the
Apprehending Zone Model focuses on the time-space of problem-solving activity and cultural
communicating.

The Apprehending Zone Model foregrounds the agency of student body and sensory percep-
tion in assimilating and linking mathematical formats, situational attributes, and relations
among all of these. In our design research classrooms, teachers taught and students learned
ratio and proportion by tacitly internalizing—externalizing dynamic visuo/body-sensed sche-
matic images that systematically linked the word-problem situations with the spatial-numeri-
cal mathematical formats and solution methods (see Abrahamson, 2004a, for an analysis of the
roles of gesturing in our classrooms). These visual and body-based images constructed and
mediated the classroom semiotic network (Greeno, 1998) of ratio and proportion by linking the
various row and column formats, by linking problem situation texts and the math tools through
mathematizing and storyizing, and by linking students’ developing interpretations of the do-
main tools with those of their peers and their teacher. The body-based structures of proportion
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Figure 13.1. The body-based teaching—learning Apprehiending Zone Model: The time—space
of problem and cultural communicating.

became a classroom taken-as-shared artifact or grammar of space-time (Urton, 1997) linked to
real-world proportional situations and to the various column forms of the a:b format. These
attentional and gestural links became generative mathematical activity tools, or what Stetsenko
(2002) calls “crystallized templates of action” (p. 129; see also Barsalou, 1999, p. 599, on
shared embodiment). Examples of all three of these crucial kinds of linking during classroom
discourse will be given after the ratio and proportion design is described.
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THE CONCEPTUAL PHASE PROBLEM-SOLVING MODEL

Our Conceptual Phase Problem-Solving Model (see Figure 13.2) describes phases in the recipro-
cal meaning-making processes of mathematizing the problem situation (foregrounding the key
mathematical aspects of the situation) and storyizing the math notations and methods (telling
stories for each math tool). Mathematizing is shown as moving up in the model, and storyizing
is shown as moving down. The vertical boxes show the different conceptual models solvers
must form as they move from a real-world conception to a solution action sequence. Some of
our designed classroom activities moved through all phases for a given problem, and others
concentrated at particular spots (e.g., sharing different solution methods for the same prob-
lem). This model was developed for describing addition-subtraction word problem solving by
students in kindergarten through grade 3 (Fuson, Hudson, & Ron, 1997; Ron, 1999). We
modified it here to show in the left column the activities at each phase in which students and
teachers need to engage in the classroom and individually when understanding ratio or solving
a proportion problem. The fit of the model for these domains that span the elementary school
years suggests that it is widely applicable, at least in numerical situations.

THE DESIGN FOR LEARNING ADDITIVE-MULTIPLICATIVE
AND MULTIPLICATIVE SOLUTION METHODS
FOR PROPORTION PROBLEMS

In our design we sought to introduce fifth graders to ratio and proportion by grounding it in
multiplicative contexts that would enable students to avoid the usual additive solution errors.
We also used middle-difficulty problem numbers in which the ratio pairs were not multiples of
each other but were multiples of the smallest basic ratio (e.g., 3:7, such as 6 to 14 and 15 to
35), so that students would learn more general solution methods than the simple multiply/
divide methods used with the easiest problem numbers involving only a basic ratio and a
multiple of it (e.g., 3 to 7 and 15 to 35). We discuss at the end of the chapter how this approach
can generalize to proportions involving fractions and decimals and to advanced solution meth-
ods such as finding unit rates and cross-multiplying. The math formats and situations linked
in our design are shown in Figure 13.3 and will be explained in this section.

All approaches to teaching ratio and proportion need to help students use and understand
ratio tables and some format for representing and solving proportions. Ratio tables are vertical
or horizontal formats that record the results of repeated coordinated additions of a basic ratio
pair of numbers. The middle cell of Figure 13.3 shows a ratio table for the ratio 3:7 in which
the columns are made by repeatedly adding 3 to the left column and 7 to the right column. Any
two rows from a ratio table are proportional because they are each multiples of the basic ratio
(e.g., they are 3m :7m, and 3m,:7m, and thus are multiples of each other). Ratio stories are
situations that generate ratio tables. They involve two linked situations that begin at zero and
in which the repeated addings are made together. Figure 13.3 gives one of our design ratio
stories: “Every day Robin puts $3 in her kitty bank and Tim puts $7 in his doggy bank.” Each
ratio story involves an explicit or implicit linking column that coordinates the repeated adding
actions in the two linked stories; in this story, the linking column numbers the days. The
linking column enables one to find a given row by multiplying rather than by repeatedly
building up within the ratio table to that row (e.g., on Day 5, Robin has 5 x $3 = $15 in her
kitty bank and Tim has 5 x $7 = $35 in his doggy bank). If the rows are made by multiplying
instead of by repeatedly adding, ratio tables can have rows omitted or reversed.

Each of the coordinated situations in a ratio story can be seen in isolation as a multiplication
story made by repeatedly adding the same number. The Group Total Table shown in the left
cell of the middle row in Figure 13.3 shows the multiplication story of Robin putting $3 in her
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Figure 13.2. The Conceptual Phase Problem-Solving Model in the classroom: mathematizing

the situations and storyizing the math tools.

Campbell-RT4118_C13.pmd 217

10/13/2004, 1:30 PM



218 Handbook of Mathematical Cognition

‘uorpodoid pue opjel Suruies| pue Suiyoeal Ioj S[00} [edIjewaYIeA €' gl Ind1

“(¥e[[0p UIQOY

Iod Te[[op WL, €//) T SY} INOYNM [OES J0J,,

10 Jod,, Suisn pres oq ued {($1./L A T) M Ul

[ JoqUINU & [IM Onjel © S ajer jun € ($1L:$U€
“IY T:SQ[IW §) PAISI] SHUN ) YIIM ONBI Y :djey
*(SUIN[Od TN 7 WIES 3} WOIJ SMOI 7

Kue) sse[o aouaeanbe oner e woyy sued g Aue

‘oner auwres oY) Jo sejdpnw 7 Auy :wonaodoag

‘(LN 2} JO sumnjod oM} Aue) onjel g Jo sejdnynuu

Jo smed pazepio Iy :sse[) dudeamby oney
‘w jun Sukdnnu—3ununod Towod
& Aq paxyur] sdnoid jo ared peropio uy :opey

[‘'uonenmys
oy} uo Surpuadep ‘suonoely ‘sfewoap ‘srequinu
sjoym aaey Aewr TN ] (1IN oY) JO UWIN[OD JOTH0

Aue pue UwInjod ISI1J AY)) LA oY) JO STWN[od

7 Aq umoys 3:1 J10J Sse[o opeIe oJul J, =3 x W
uonemis uonedrdinw Aue sagueyd 9[qe) e yong
"MOI [oea axew 0} pappe st dnoi3 auo se sdnord
W I0J [)0) 3Y) SMOYS eI [0, dnois) v

suopuaq

Twn[od guDjur]

ROk _@.
| p i p: | seigl o o 5 |
g e EANA 8z 4l ¥

LI «(SES PaAES : 12:6 1z 6 ¢

pey "1 ueym aaey Y pIp yueq £330p
¢ 5 q:® w +$1:9 £
gonu Moy uay) ‘41§ pey "L siqur zg sind iy f 7 - ¢
pue 93 peq ..M Aep urepreo 1 Lig pue yueq Apy 1oy | ¢ I
© UO J] "SOJBI JUB)SU0d w ¢g sind wqoy
12 9AS WL, PUE UIQOY, 0 0:0 “Kep Kxoay,, | © 0 0
H71ZZ0d IN R AT9VL OILVY | = oy w

O

@ S+
()

wix

«Yueq Appysequr g

uopodoig danedndnNN-2ARIPPY

24]OS 0] SUUINJOD % SMOL pulf —
sdaquiny ¢ Aup 2avy uvd 2)zzng [N

I Y1 fo suwinjod
pup smo. ui 3u1aq Sv uoypnjLs
uonodoad v ui s1oquinu ¢ jjp 3u122g

sind uiqoy ‘Aep A1oad,, g, i !
HT1dV1L 0 0
TVLOL dNOYD €=38 w
1

3

8,

®

b )

S

z

g

]

Q

[~

N

3

8

LA o4 uy uopaodoag

10/13/2004, 1:30 PM

218

‘ Campbell-RT4118_C13.pmd



Understanding Ratio and Proportion 219

kitty bank each day. Thus, we can begin students’ introduction to ratio with multiplication
stories involving repeatedly adding some amount. We call such a single column table (or its
related two-column form with the ones column on the left) a Group Total Table to link such
tables to students’ early experience with multiplication as repeated groups (we would prefer to
call these tables the same name as their stories but cannot call them multiplication tables
because of confusion with the usual 9 x 9 or 10 x 10 table with that name). Use of these Group
Total Tables allows students to explore different kinds of multiplication situations, see the
Additive-Multiplicative repeated adding of the same amount in one column of the ratio table
format, and relate this to making a particular group total by multiplication (multiplying the
row number times the group number, as in “on Day 5, Robin has 5 x $3 = $15 in her kitty
bank”). Connecting Additive-Multiplication and Multiplication meanings is an important basis
for the continued growth of full understanding of all of the aspects of ratio and proportion (see
Fuson and Abrahamson, 2004, for a fuller discussion of relationships to more advanced meanings
of ratio and proportion and Fuson, Kalchman, Abrahamson, & Izsdk, 2002, for discussion of
such connections in multidigit multiplication, fractions, and linear functions).

The multiplication table (MT) is a cultural format widely used to display the products of
numbers 1 through 10 (see the top left cell in Figure 13.3). Any ratio table using a basic ratio
from these numbers can be made by pulling two columns from the multiplication table and
putting them together (see the three and seven columns highlighted in the multiplication
table). For students who understand the structure of the MT as columns made by repeatedly
adding the same number (sometimes called “count-bys” as in “count by 3s”), making a ratio
table from two MT columns can facilitate comprehension of the ratio table. For students who
do not understand the structure of MT columns, linking multiplication stories to a single MT
column and linking ratio stories to a ratio table as columns from an MT can facilitate compre-
hension of the repeated adding structure of the MT because of the repeated adding actions in
the stories.

A proportion is made from any two rows of a ratio table. In the top row of Figure 13.3, one
can see that a proportion also arises within an MT as the four corners of a rectangle made by
the two columns that form the proportion’s ratio table and the two rows containing the
proportional pairs. One can solve a proportion with one unknown by thinking about which
rows and which columns of the MT form that proportion. This is facilitated by writing the
proportion as a mini-MT with one empty cell (see top right of Figure 13.3). Initially, only the
three known values appear inside this mini-MT, and there are no values outside it. We call this
format an MT puzzle (it was called a proportion quartet in early versions of the design). There
are six solution paths for each MT Puzzle. You write the row and column numbers outside the
MT Puzzle as you solve it. Working with an MT, you could simply copy these row and column
numbers. Working without an MT, you need to determine which MT rows and columns make
the MT Puzzle (i.e., find the common factors for both rows and both columns). You start with
either the row or column in which you know two numbers. You then can move to the column
or row perpendicular to what you just solved or to the other row or column in which you know
two numbers. We found that all students from grades 5 through 7 could learn to solve MT
Puzzles with, and then without, the support of an MT and that they loved to solve them. Given
any proportion problem, one can set up an MT Puzzle (see the example in the right-most
middle cell of Figure 13.3) and then solve it to find the unknown number in the proportion
problem. It is helpful to label the rows and columns with situation labels to connect the MT
Puzzle to the situation.

The usual format for setting up a proportion in the United States is the equivalent fraction
format. This does not provide the conceptual links to multiplication given by the MT Puzzle
format. It also introduces conceptual confusions between ratios and fractions. And because
many students experience difficulties operating with fractions, it does not necessarily suggest
helpful solution strategies. The MT Puzzle format used with the MT eliminates these problems.
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These tools also can be used to examine and clarify differences and similarities between ratios
and equivalent fractions. Fraction equivalents can be seen as two rows from the MT (see the
chain of equivalents for 2/5 in the 2 row over the 5 row in the MT in Figure 13.3). Also an MT
Puzzle can be used to find any of the four numbers unknown in a fraction equivalence. For
example, the MT Puzzle in Figure 13.3 can be taken as the equivalent fractions 6/? = 14/35,
and these numbers as vertical fractions can be seen in the MT in the 2s and 5s rows. For a
more detailed analysis of these issues and related issues involving rates, see Fuson and
Abrahamson (2004, where relationships between our perspective and those of others, espe-
cially Confrey, 1994, and Vergnaud, 1983, are discussed).

Our design for teaching ratio and proportion evolved through a series of design research
studies (see Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, for a discussion of design research).
Our design work in various domains has been directed by several core design principles. We
continually seek to create teaching-learning materials that “start where children are and keep
learning meaningful” (Fuson, De La Cruz, Smith, Lo Cicero, Hudson, Ron, & Steeby, 2000;
Fuson, 1988). We use innovative approaches that are “intuitively convincing” (Abrahamson,
2000), but we continuously consider pragmatic constraints to ensure widespread usability of
the design. We design to help students ground mathematical notations and methods in perception,
intuition, and experience (Gelman & Williams, 1998; Wilensky, 1997; Freudenthal, 1981). We
find or develop supports for core curricular concepts (Fuson, 1998, 2004) that align with and
build on students’ implicit models (Fischbein, Deri, Nello, & Marino, 1985) and their develop-
ing image-based understandings (Kieren, Pirie, & Gordon Calvert, 1999). Our design studies in
ratio and proportion have included (a) two case studies, each with an individual high-achieving
third-grade student, that explored an optical stretch-shrink model as grounding for propor-
tional equivalence (Abrahamson, 2002a); (b) a constructionist study with 3 fourth-grade stu-
dents who were asked to design and build a multiplication table that had no numerals
(Abrahamson, 2002b); (c) one summer intervention study with fifth-grade low achievers who
initiated creative transition links between the multiplication table, ratio table, and MT Puzzle,
including a ratio table with empty rows between the given-values rows that they then collapsed
into a MT Puzzle with those values (Abrahamson, 2002c); and (d) six classroom teaching
experiments with four different teachers of grades 5 through 7 who taught successive itera-
tions of the curricular unit evolving from our design research (Abrahamson, 2003; Abrahamson
& Cigan, 2003; Abrahamson, 2004b; Abrahamson & Fuson, 2004). The classroom studies were
a collaborative effort involving the teachers and district math resource staff.

Our most recent design is outlined in Table 13.1. The table details the three kinds of links
described by the Apprehending Zone Model within and across the situations and the math
formats (amplified in Table 13.1 as the “MT-RT numerical additive-multiplicative and multi-
plicative stream”) and how these links were organized across days into streams of situational
and math format numerical activities. Within the numerical stream, links were made between
the multiplication table, ratio table, and MT Puzzle formats. Within the real-world situational
stream, multiplication stories, ratio stories, and proportion stories were linked to each other.
Continuing daily links were made between these two streams by mathematizing the stories
(focusing on the mathematical elements to record them in the spatial-numerical math for-
mats) and by storyizing the math formats (telling stories for each kind of format and usually
working within a story context when using a math format).

Special materials for the unit included a large whole-class laminated multiplication table,
individual multiplication tables from which students cut MT columns to form ratio tables, and
filmstrips the students drew to show repeated adding situations (multiplication stories and
ratio stories). Students also filled in scrambled multiplication tables in which the rows and
columns of an MT were switched around and most of the products were missing. These were
like big puzzles, and students used different strategies to solve them. These provided practice
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Mathematizing and Storyizing within the Designed Situational and Numerical Streams

Number of
class
periods
(60 min)

MT-RT numerical
additive-multiplication

Table 13.1
Real-world
situation mathematizing —
stream

and multiplication
stream

« storyizing

1

4

5to 8

Multiplication situations (stories)

as a class built up by repeated adding
of the same amount: Show actions of
adding the same amount on filmstrip
drawings.

Many different multiplication
situations (Multiplication Stories)

Continual mixing in of non-
multiplication situations

Writing multiplication and non-
multiplication stories (continues
into writing ratio and non-ratio stories)

Linked multiplication stories (group
total situations) are Ratio Stories

Proportion problems come from
Ratio Stories

Writing proportion and nonproportion
stories (continues all unit)

Gaining fluency solving a range of
proportion problems and differentiating
these from nonproportion problems

Find patterns in the MT using big class
MT and small student MTs

Make group total tables from filmstrip
drawings

Cut columns from MT and show group total
table with 2 columns (1s column and group
column)

Match group total tables to
multiplication stories

Introduce and practice MT puzzles as coming
from 2 rows and 2 columns of the MT

Identify group total and non-group total
tables; match to stories

Introduce and practice scrambled multiplication
tables

Ratio tables are made from a common linking
column; show with 3 cut-out MT columns (left-
most is 1s column); students continue to use
MT or RT to solve problems while gaining
fluency with MT Puzzle solutions

Solve proportion problems with MT puzzles;
rows and columns can be scrambled in
any order

Gaining fluency with MT Puzzles, Scrambled
MTs, and setting up and solving MT Puzzles
from proportion problem situations

Note: Relationships were continually established within and between elements in these two streams by storyizing the
mathematical notations and mathematizing the situations through gestured discussions.

with multiplications and divisions and gave models for proportions in MT Puzzles that had

smaller numbers in the second column or column.

LEARNING ISSUES IN USING MATH TOOLS
IN THE CLASSROOM

Part of our ongoing design research was to identify learning issues that presented difficulties
to students and then seek to minimize these in subsequent designs. This recursive process
finally resulted in the eight learning issues given in Table 13.2. Of these, six (all but the first
and the sixth issues) are learning issues for any teaching design in the domain of ratio and
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Table 13.2

Learning Issues of the Ratio-and-Proportion Design Grouped by Type of Reasoning

Learning Issue

Definition

Theorems-in-Action

Solving By Looking Up

Additive-Multiplicative
Zero Starting Point

dend

Columns (or Rows)
Are Repeated
Addition Sequences

Repeated Addends
Versus Totals

Multiplicative
Multiplicative Structure
and Use of the Table
Formats Multiplication
Table, Ratio Table,
and MT Puzzle

Ratio Table

Linking Column for
the 2 Sequences

General
Vocabulary

Labeling
(“Table Manners”)

Locating unknown values on a Multiplication Table or on a prefilled Ratio
Table or MT Puzzle or selecting Multiplication Table cut-out columns.
Students may only know how to find relevant parts of the tool to answer
a question.

Multiplication and ratio stories have a starting point at zero, from which

the repeated addend is iterated (in some versions of the mathematical

formats, this zero moment is omitted and the table begins with the ad-
that will be repeatedly added).

Attending to, parsing, constructing, and articulating multiplication stories
or ratio stories as MT columns. Columns begin either at 0 or at the
column number and then iterate the constant addend (the column
number) without repeating or skipping rows.

Interpreting the sequence of values running down MT columns as running
totals in multiplication stories or ratio stories and specifically distinguishing
between these running totals and the constant addend (the column number).

These grid-structured formats have rows and columns with uniform cell
sizes, and each number is the product of the left row number and top
column number. A 10-by-10 Multiplication Table can be modified by
reordering (to make Scrambled Multiplication Tables or MT Puzzles) and
by extending rows and columns.

The number of iterations so far in the linked Ratio-Story columns can be
represented in a separate left-most column, but it may be implicit rather
than physically present (as in standard two-column ratio tables).

Using new and familiar terms for the formats (e.g., row, column), the
situations that are grounded in these formats (e.g., miles an hour, growth
unit, per), and the “pure” mathematics of the domain (e.g., multiple,
common factor, rate, ratio, proportion).

Labeling columns or rows with the kinds of quantities they represent in
the story situation.

proportion. The first—Solving By Looking Up—would occur only in our design for the MT and
MT cut-out columns, though it might be used for ratio tables in other designs. However,
Solving By Looking Up was crucial in our approach because less-advanced students initially
solved problems by finding relevant numbers on the MT (e.g., they found the three known
proportion numbers as three corners of a rectangle in the MT and chose the fourth cell of the
rectangle as the answer). Such uses of the MT enabled students of all levels to participate in
problem solving from the beginning. The sixth learning issue—Linking Column for the 2
Sequences—also is much more explicit in our design than in most approaches. This explicit
linking column supports mathematizing and storyizing, and it facilitates moving to multiplica-
tion methods because the multiplying number is written.

To exemplify the major learning issues, and to enable readers to see the design math tools
in use in discussions in the classroom, we constructed Tables 13.3 through 13.7 to show one
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display of understanding and one display of difficulty for each of the second through sixth
learning issues. These tables used transcliptions, our method of data preparation that enabled
the research team to see and communicate about the rich data in the raw videotapes of the
classroom. These transcliptions were made by transcribing the videotapes and pasting in clips
from the videotape to accompany the transcriptions. Tables 13.3 through 13.7 show typical
examples of teaching and learning in action in the classroom. The limited space in this chapter
does not permit discussion of these examples (see Abrahamson, 2004b, and Fuson & Abrahamson,
2004, for results of analyzing students’ understanding of and difficulty with these learning
issues).

These transcliption data made salient to us the centrality of gesturing and body-based
communication within the classroom, and they contributed to the development of our Appre-
hending Zone Model (see also Alibali, Basso, Olseth, Syc, & Goldin-Meadow, 1999, concerning
gesturing). In gesturing to mathematical objects within or displaced from their peri-personal
space, students had opportunities to: (a) relate various math tools by folding back on the MT
(i.e., use its familiar structure to make sense of a new format or situation; Kieren et al., 1999);
(b) learn and practice verbalized mathematical terminology (e.g., row, column, common factor,
multiple, product) supported by touching or gesturing; and (c) develop and practice the body-
based imaging and action structures (or haptic experience; see Nemirovsky, Noble, Ramos-
Oliveira, & DiMattia, 2003) necessary for problem solving and communicating in the absence
of the math tools (e.g., draw an MT Puzzle in the air and point to cells of it). The results of the
analysis of gesturing in student classroom learning are summarized in Abrahamson (2004a).

A BRIEF OVERVIEW OF LEARNING IN OUR CLASSROOMS

We briefly summarize here some of the learning results from the two classes (n = 19 and 20)
that were videotaped and studied most intensely (see Abrahamson, 2004b, and Fuson &
Abrahamson, 2004, for details). These both were extremely heterogeneous classrooms of fifth
grade students, with 20% African American students, 20% Latino students, 38% of students on
free lunch, and learning-disabled and English-language learners in both classrooms. Many
students had had Everyday Mathematics (Bell et al., 1998) since kindergarten, so they were
used to discussing their thinking in class. Both teachers were excellent teachers and led math
discussions well. The transcliption data in Tables 13.3 through 13.7 are from one of these
classrooms.

On the pretest, most of the students in both classrooms approached ratio-and-proportion
word problems using additive reasoning, the typical error made even by older students. In
independent work-alones given at the beginning of each class to track student learning or on
the posttest, all students used additive-multiplicative or multiplicative reasoning successfully to
solve at least some middle-difficulty nondivisible proportion problems in which neither ratio is
a multiple of the other. The low-achieving students depended longer into the interventions on
the MT as a support for their participation in classroom problem solving and discussion (e.g.,
they found the three numbers from a problem in the MT and then traced down and across to
find the fourth number), but eventually all students successfully made ratio tables and/or MT
Puzzles to solve some problems.

Throughout the unit, students showed variability in the ways in which they made ratio
tables and MT Puzzles to solve problems. This variability suggested that they were assimilat-
ing the formats to their own ways of understanding. Examples of such variability are shown in
Figure 13.4.

On the critical three posttest items that involved medium difficulty problems in which the
proportions were not multiples of each other (e.g., see Figure 13.5), the middle half of the
students (20 of 39) rose from 0% correct on the pretest to 100% correct on the posttest. In the

(Text continued on page 230)
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Figure 13.4. Variation in student solution formats and accompanying verbatim written
responses in solving individually the Day 5 in-classroom word problem, “Two flower buds
peeped out of the ground on the same morning—a daffodil and a petunia. After some days,
the daffodil was 12 cm tall and the petunia was 21 cm tall. When the petunia is 35 cm, how
tall will the daffodil be?” Students’ work suggests a classroom bootstrapping—each student
at their personal pace and along their personal path—the familiar structure and function of
the multiplication table that was available for their use in developing an understanding of
additive-multiplicative properties of situated ratio and proportion. Although the MT-Puzzle
format was taught after the ratio table (RT) in the design, students using the MT-Puzzle do
not necessarily evidence deeper understanding (e.g., compare B., an RT solution and full
explanation, to I., an MT Puzzle copied out of an MT).

aThis student’s incomplete table was included to demonstrate students’ flexibility in column order in the RT
format (e.g., compare to Item A.) as well as in the PQ format (e.g., compare Items C. and F.). On the posttest (1
week later), she correctly solved all three critical items (items with proportional ratios that are related by a non-
integer multiple).

Picture E. has been included to demonstrate both our access to work-in-the-making, and specifically to show
that such access informed us of students’ strategies: this student apparently consulted the MT rather than factoring
the PQ.
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top fourth of the students, eight rose from 33% to 100% correct, and two were at ceiling on the
pretest (but moved from pictorial to numerical solution methods). Of the lowest nine students,
five rose from 0% to 53% correct, and four did not solve any of these nondivisible problems
completely correctly. Thus, overall, the percent correct on the posttest was 84%.

The errors of the lowest-achieving students showed that they were at various points of
mastery ranging from correct setting up of problems in an MT Puzzle with some multiplication
or division error to still using a pictorial strategy. Typical pre- and posttest responses for the
successful low achievers are shown in Figure 13.5. Each set up a different MT Puzzle, which
interviews and observations in class indicated that they could explain. The lowest-achieving
students could have benefited from more time on the unit.

Some high-achieving students did use multiplicative strategies on the pretest; these were
elaborate concrete pictorial-numerical solutions involving units. All of these students began
to use MT Puzzles during the unit and related in interviews or in whole-class discussions their
initial solution methods to this more general method.

Much of the class became able to extend the MT Puzzle to three columns to solve complex
proportion problems that involved a total, such as: “Monica and Lin are putting together a
pony puzzle. Each kid is working at a steady pace. At a certain moment Monica has put in 24
pieces and Lin has put in 32. When they have put in 63 pieces together how many pieces has
each put in?”

Teachers were very positive about the ratio-and-proportion unit. They said that they felt that
their less advanced students had understood multiplication more deeply, that all students had
learned a great deal about ratio and proportion, and that their more advanced students had
connected multiplication, division, proportions, and fractions. Their students expressed liking
the MT-Puzzle solution method because most trusted and were familiar with the MT and

“The Boston Park Committee is building parks. They found out that 15 maple trees can
shade 21 picnic tables when they built the Raymond Street Park. On Charles Street,
they will make a bigger park and can afford to buy 50 maple trees. How many picnic
tables can be shaded at the new park?” (item from Kaput & West, 1994)

Pretest Posttest
You can Shade 1,050 PiehiC tables -
LY
7 3 )
lr (o
\ 5
15 NopR Ysees = 2\ Pienic dables Shaded Bﬂ 4 Answoer = 10
3 20 3
= - = ) 5 = Y s %
(Sforsasrsis s +s LN, """
22 222 21 2 2 S o

Figure 13.5: Typical pre- and posttest responses from low-achieving students. One student
initially misapplied a multiplication strategy (using the lattice technique), and the other
miscoordinated the proportion addends—factors. Later, both successfully used the MT-Puzzle
format, each setting up a different MT Puzzle. Interviews and observations in class indicated
that they could explain their use of the MT Puzzle to solve such problems.
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because the format helped them organize the given information during problem solving. The
ideas in the unit were presented at a district workshop to thirty fifth-grade teachers. These
teachers found the approach accessible and appealing. Thus, the approach seems to fit within
the learning zone of a wide range of fifth-grade students, and it appears to move all of them
along their own learning paths to using additive-multiplicative and multiplicative solution
methods for ratio and proportion.

EXTENDING THE MULTIPLICATION TABLE APPROACH
BEYOND WHOLE NUMBER RATIO MULTIPLES

The MT-Puzzle approach transfers to all cases of proportional, fraction, and measure equivalencies
and to other topics that use proportions. We did three types of mini-extensions with different
classes: these were on percentage, similarity geometry, and coordinate graphing. Following a
three-day mini-unit on percentage, one class progressed from 26% to 76% correct on percent-
age items. Following a two-day mini-unit on finding sides of similar figures, one class pro-
gressed from 5% to 78% correct on the nondivisible item. This unit was introduced through the
eye trick (Abrahamson, 2002a), an optical illusion in which two proportionally equivalent
pictures look identical when you hold them up, shutting one eye, with the smaller picture
nearer your eye, followed by measuring and tabulating lengths in the pictures. For coordinate
graphing, students aligned sets of proportionally equivalent (i.e., similar) rectangles from the
eye-trick activity so that their corners were together and used the line made by the diagonally
opposite corners to introduce graphs into the coordinate system (Abrahamson, 2002c).

Students can also move from our approach to using unit ratio and cross-multiplication
strategies. Unit ratios can be seen as a row in the ratio table in which one number is 1. For the
Robin and Tim story in Figure 13.1, these unit ratio rows would be 3/7:1 and 1:7/3. Some of
the high-achieving fifth-grade students came to understand fraction unit rates (e.g., 3/7) that
they had been using before the intervention as such unit ratio rows above the 3:7 row. A
general unit ratio solution method involves moving up the ratio table (by dividing) to find the
unit ratio row and then down a mostly empty ratio table (by multiplying) to find the row
containing the unknown.

Cross-multiplication can be developed by factoring within the MT Puzzle and observing that
the same four factors are in both diagonals. Therefore, the products of the two diagonals are
identical, i.e., top-left x bottom-right = top-right x bottom-left}). One can then pursue cases in
which different cells are the unknown to see that this factor structure allows you to find any
unknown by multiplying the two known numbers in a diagonal and dividing by the number in
the diagonal with the unknown, e.g., top-left = (top-right x bottom-left)/bottom-right. Such cross-
multiplication was successfully pursued in a multisession individual tutorial with a low achiever
in one of the classrooms. The unit ratio strategy, based within the ratio table, and the cross-
multiplication strategy, based within the MT Puzzle, are general enough to be used with any
numbers (whole numbers, fractions, or decimals) or with algebraic expressions. If one solves
the same problem in all three ways (unit ratio, cross-multiplication, and MT Puzzle), one can
see the relationships among the multiplication-division expressions involved in each strategy.
Thus, all of these solution methods can come to be understood as different ways of seeing and
solving a proportion. However grounding the unit ratio and the cross-multiplication strategies
in MT Puzzles may help to avoid the rote learning of these strategies that is often decried in
the literature.

CONCLUSION

Our studies indicate that fifth-grade students are ready to learn ratio and proportion. Their
comfort with addition and growing facility with multiplication enabled them to understand
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and relate the additive-multiplicative multiplication story situations created by repeated addi-
tion, the filmstrip drawings of these situations, and vertical ratio tables, all within the support-
ive context of the multiplication table. Students then moved on to solve proportion problems
multiplicatively by thinking of MT Puzzles as two rows of two columns from the multiplication
table or as two rows of a ratio table. The continual focus on ratio pairs as rows in vertical
multiplication columns almost completely eliminated the typical inappropriate additive reason-
ing of subtracting within a ratio pair. The MT Puzzle enabled students to set up and solve
middle-difficulty nondivisible proportion problems such as 6:14 = ?:35).

The Apprehending Zone Model and the Conceptual Phase Problem-Solving Model identify
key learning processes that support sense-making in the classroom. They go beyond static or
even dynamic models of mathematical cognition to address desirable features of the teaching-
learning setting in action. They also focus on crucial attributes of designed teaching/learning
experiences and thus support analyses that can result in recursive improvements in such
designs. Our new transcliption method of video data organization and presentation enable a
research team and readers to experience classroom teaching and learning data in a richer way
than is usual. As these models and methods are applied to other domains, we are hopeful that
richer and deeper understandings of mathematical cognition will emerge.
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